Advanced SLP (mSAP) technology enables higher density interconnect miniaturization - 3D system modularization

IMAPs Jan16 2019 Phoenix Chapter

Steve Anderson, Rainbow Yuan, Markus Leitgeb, Martin Schrems, AT&S AG
Disclaimer

This presentation is provided by AT & S Austria Technologie & Systemtechnik Aktiengesellschaft, having its headquarter at Fabriksgasse 13, 8700 Leoben, Austria (“AT&S”), and the contents are proprietary to AT&S and for information only.

AT&S does not provide any representations or warranties with regard to this presentation or for the correctness and completeness of the statements contained therein, and no reliance may be placed for any purpose whatsoever on the information contained in this presentation, which has not been independently verified. You are expressly cautioned not to place undue reliance on this information.

This presentation may contain forward-looking statements which were made on the basis of the information available at the time of preparation and on management’s expectations and assumptions. However, such statements are by their very nature subject to known and unknown risks and uncertainties. As a result, actual developments, results, performance or events may vary significantly from the statements contained explicitly or implicitly herein.

Neither AT&S, nor any affiliated company, or any of their directors, officers, employees, advisors or agents accept any responsibility or liability (for negligence or otherwise) for any loss whatsoever out of the use of or otherwise in connection with this presentation. AT&S undertakes no obligation to update or revise any forward-looking statements, whether as a result of changed assumptions or expectations, new information or future events.

This presentation does not constitute a recommendation, an offer or invitation, or solicitation of an offer, to subscribe for or purchase any securities, and neither this presentation nor anything contained herein shall form the basis of any contract or commitment whatsoever. This presentation does not constitute any financial analysis or financial research and may not be construed to be or form part of a prospectus. This presentation is not directed at, or intended for distribution to or use by, any person or entity that is a citizen or resident or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would require any registration or licensing within such jurisdiction.
Agenda

- What is mSAP (mSAP vs. Subtractive)
- Why mSAP
- mSAP capability & Roadmap
- Summary
- Q&A
A world leading high-tech PCB & IC substrates company

High-end interconnect solutions for Mobile Devices, Automotive, Industrial, Medical Applications and Semiconductor Industry

Continuously outperforming market growth

#3 in high-end technology worldwide*

Among top 10 PCB producers worldwide*

€1bn revenue in FY 2017/18

10,000 employees**

Cost-competitive production footprint with 6 plants in Europe and Asia

* For CY 2017
Source: N.T. Information Ltd (July 2018); Prismark
** For AT&S FY 2017/18
Global footprint ensures proximity to supply chain & cost efficiency

- **977***: Leoben, Headquarters, Austria
- **401***: Fehring, Austria
- **1,144***: Nanjangud, India
- **2,335***: Chongqing, China
- **4,365***: Shanghai, China
- **301***: Ansan, Korea

*Staff, Average, FTE, Q1 2018/19; 74 employees in other locations

IMAPS Phoenix, AT&S, Anderson, SLP mSAP Technology, Jan 2019

Copyright AT&S
AT&S Applications

Radio Frequency
- Wireless Communication, Sensing, Energy Harvesting (5G, M2M, IoT, RADAR, ...)
- HDI, mSAP, ECP®, XiB, FO-SiB, HF materials (low Dk,Df)
- High Integration, Antennas, Multi-material PCBs

Thermal and Power Management
- Optical Sensors and Cameras, Environmental Sensors, Microphones and Speakers
- Medical Diagnostics, ...
- Thermal vias, insulated metallic substrates, thermal conductive PCB, heat pipes, ...

Sensors and Actuators
- HDI, Anylayer, ECP®, XiB, FO-SiB, Flex PCB
- High integration, Special materials

Computing & Data Storage
- Smartphones, PCs, Smartwatches, Data centers, SSD, ADAS/ Centralized Computing, ...
- HDI, Anylayer, IC substrates, ECP®, XiB, FO-SiB
- High integration, High density IO
Positioned as leading high-end interconnect solutions provider

From high-end PCB/substrate manufacturing to high-end interconnect solutions:

Core business + New technologies and solutions

Extended technology toolbox
- Enabling module integration

Additional customers

Additional applications
- Panel level manufacturing
- Broader positioning in the value chain

PCB/substrates
Embedding

More than AT&S
Agenda

What is mSAP (mSAP vs. Subtractive)

Why mSAP

mSAP capability & Road map

Summary

Q&A
AT&S Product Portfolio – addressing increasing density

<table>
<thead>
<tr>
<th>Subtractive Plating</th>
<th>SAP Plating</th>
<th>mSAP Plating</th>
<th>Subtractive Plating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECP®: Embedded Component Packaging</td>
<td>ICS IC substrates</td>
<td>Substrate-like printed circuit boards</td>
<td>HDI any-layer printed circuit boards (ELIC)</td>
</tr>
<tr>
<td>Embedded Component Packaging allows to embed active/passive components contributes to miniaturization.</td>
<td>IC substrates serve as interconnection between semiconductors and PCBs (Line/Space < 15 micron).</td>
<td>Substrate-like PCBs are the next generation of high-end HDI PCBs (Line/Space < 30 micron).</td>
<td>HDI microvia printed circuit boards – high density interconnect</td>
</tr>
<tr>
<td>HDI: high density interconnection with laser drilling (microvias). 4-layer laser PCBs up to 6-n-6 HDI multi layer PCBs</td>
<td></td>
<td>Enhancement of HDI microvia with any layer laser connection; contributes to miniaturization; 4 to 12 Anylayer HDI (Line/Space = 40)</td>
<td>Combine the advantages of flexible and rigid printed circuit boards, yielding benefits for signal transmission, size and stability.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production site</th>
<th>Production site</th>
<th>Production site</th>
<th>Production site</th>
<th>Production site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leoben, Shanghai</td>
<td>Chongqing</td>
<td>Chongqing, Shanghai</td>
<td>Shanghai, Leoben</td>
<td>Shanghai, Leoben</td>
</tr>
<tr>
<td>Production site</td>
<td>Production site</td>
<td>Production site</td>
<td>Production site</td>
<td>Production site</td>
</tr>
<tr>
<td>Shanghai, Leoben</td>
<td>Leoben, Ansan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SLP (mSAP) - The Next Level of Technology
Advanced SiP, Fan-out Modules, and Heterogeneous Packaging requires finer L/S

- PCBs are now approaching semiconductors with regard to feature sizes <30um creating substrate-like PCBs (SLP)
- The modified semi-additive metalization processes (mSAP) achieves the tighter sub-30 micron features required for Data-centric mobile devices
- Leverages larger panels than substrate technology for HVM

Source: PCB Magazine Sep, Oct 2018, Yole Adv Substrate report 2018
Market trends - miniaturization & modularization

Source: Yole, AT&S AG (2018)
SLP Helps Accelerate Modules and Heterogeneous Systems

Modules and Smart Systems

Interchangeable, complex element in a system or sub-system which performs one or more specific functions, and contains a minimum of two components with at least one being active.

Generic Module Functions for Smart Systems

- Energy harvesting
- Power management
- Energy storage

- Processors (CPU, GPU, ...)
- Memory
- Sensors
- Connectivty
- System software

Industry driver - miniaturization & modularization

<table>
<thead>
<tr>
<th>Year</th>
<th>TYPE</th>
<th>PCB</th>
<th>FORM FACTOR</th>
<th>LINE/SPACE</th>
<th>TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003/04</td>
<td>Mobile Phone</td>
<td>125x55mm</td>
<td>1</td>
<td>100/100µm</td>
<td>1-n-1</td>
</tr>
<tr>
<td>2013</td>
<td>Smartphone</td>
<td>85x20mm</td>
<td>0.25</td>
<td>40/40µm</td>
<td>Any-layer</td>
</tr>
<tr>
<td>2017</td>
<td>Smartphone</td>
<td>80x20mm</td>
<td>0.23</td>
<td>30/30µm</td>
<td>mSAP – Any-layer</td>
</tr>
<tr>
<td>202X</td>
<td>All in One</td>
<td>25x25mm?</td>
<td>0.06?</td>
<td>10/10µm</td>
<td>FO/SAP/mSAP</td>
</tr>
</tbody>
</table>

Industry driver - miniaturization & modularization

- Industry driver: miniaturization & modularization
Substrate-Like PCB (SLP) Concept - mSAP

Miniaturization & Modularization

HDI Boards / MLBs
- Smart Phones
- Tablets
- Automotive
- Consumer Products

SiP / Modules
- Wearables
- Automotive
- “Modularize & Standardize”
generic elements (eg. WiFi, NFC,...)

IC/Substrates:
- Microprocessors
- CPU, GPU
- Servers, Networking
- Gaming Consoles

HDI

SLP

mSAP

SAP

Feature Sizes (µm)

40/40µm

10/10µm

Subtractive

Global Market Size Dollars 2017 - SLP Production

Estimated by JMS (JMS 推定)

*After 2020, SiPs are expected to be adopted in the most advanced smartphones.

Source: JMS Substrate Like PCB report 2018

Copyright AT&S
Substrate-like PCBs (mSAP) Drivers

- **Improved signal integrity**
 - Rectangular X-section → reduced impedance variation
 - Reduced surface roughness → lower RF transmission losses

- **Board thickness reduction**
 - Reduced z-height of electronics
 - Increased space for batteries in mobile devices
 - Thinner laminate layers

- **Routing density increase**
 - Increased trace density and routing
 - Controlled shape, smaller pads, antenna integration
Line shape: mSAP vs. Standard HDI

Subtractive process

mSAP – optimized shape/roughness

mSAP – fine L/S

Source: Georgia Tech, Atotech paper – Sep2018

Copyright AT&S
Board thickness/Impedance: mSAP vs. Subtractive

- Thickness reductions and Impedance improvement – controlled

<table>
<thead>
<tr>
<th>Layer</th>
<th>Min. Board thk.(um)</th>
<th>50 ohm impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 12</td>
<td>664</td>
<td>12.8%</td>
</tr>
<tr>
<td>Layer 10</td>
<td>552</td>
<td>12.3%</td>
</tr>
<tr>
<td>Layer 8</td>
<td>440</td>
<td>11.6%</td>
</tr>
</tbody>
</table>

- Thickness reductions and Impedance improvement – controlled
Pattern Capabilities: mSAP vs. Standard HDI

- Developed for finer package pitches, improved electrical performance & routing

<table>
<thead>
<tr>
<th></th>
<th>Standard HDI (Subtractive)</th>
<th>Advanced HDI (Subtractive)</th>
<th>SLP / HDI+ (mSAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line/Space (Cu. Thicknk)</td>
<td>60/60 µm (18±10µm)</td>
<td>40/50 µm (18±10µm)</td>
<td>30/30 µm (18+/−10)</td>
</tr>
<tr>
<td>BGA Fan-out Inner Layer (2 Channels)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepreg Thk.</td>
<td>< 55 µm</td>
<td>< 45 µm</td>
<td>< 42 µm</td>
</tr>
<tr>
<td>Laser Dia.</td>
<td>70 µm</td>
<td>70 µm</td>
<td>70 µm</td>
</tr>
<tr>
<td>Min. Pad Dia.</td>
<td>200 µm</td>
<td>170 µm</td>
<td>140 µm</td>
</tr>
</tbody>
</table>
Why mSAP

Coverage of MSAP has spread from IC substrate to Smartphone Motherboard

MicroThin™ Applications
- IC Substrate
- DRAM
- Application Processor
- Smartphone Motherboard

Cross section of Smartphone

<table>
<thead>
<tr>
<th>DRAM</th>
<th>AP</th>
<th>Mother Board</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change of patterning method on Mother Board

- LS=50/50
- LS=40/40
- LS=30/30
- LS=25/25

Subtractive Method

MSAP

Reason for using MSAP for Smartphone Motherboard
- Miniaturization and densification of Mother Board to enlarge battery space.
- Narrower BGA ball pitch to improve the function of IC package.
- Improvement of signal characteristics in high speed signal.

Source: JMS Substrate Like PCB report 2018
Agenda

- What is mSAP (mSAP vs. Subtractive)
- Why mSAP
- mSAP capability & Roadmap
- Summary
- Q&A
mSAP Capability – Improved Tolerances, Shape, Roughness

Examples of Major Mfgrs Electrodeposited Copper Plating for Via Filling

Source: JMS Substrate Like PCB report 2018, Atotech

IMAPS Phoenix, AT&S, Anderson, SLP mSAP Technology, Jan 2019

Copyright AT&S
mSAP Layers in Smartphone Teardown

Multiple Layers of mSAP in recent smartphone

- In the Processor area, the minimum trace width is measured at 30µm and the line space width is measured at 55µm.

Source: Yole, System Plus Teardowns – Samsung Galaxy S9
mSAP Layers for Performance, Tighter Routing Smartphone

Multiple Layers of mSAP in recent smartphone

Source: Yole, System Plus Teardowns – iPhone X 2018
SLB PCB Optimized for Performance, Density, Size Reduction

Board Cross-Section – PCB

10 layers SLB PCB
Total thickness: 572.6 μm
Copper layers thickness: 19.9 μm
Dielectric layers thickness (Mid Value): 51.7 μm
Micro-via diameter: 78 μm

8 layers HDI PCB
Total thickness: 447.3 μm
Copper layers thickness: 19.04 μm
Dielectric layers thickness (Mid Value): 52.8 μm
Micro-via diameter: 85 μm

Source: Yole, System Plus Teardowns
Process steps: mSAP vs. Standard HDI

Subtractive process

E-less Cu
12μm base copper

mSAP

E-less Cu
3 μm base copper

via filling Cu plating
Panel plating

Dry film
(Exposure/Developing)

Etching
Etch away
base Cu + plated Cu

Dry film stripping+

Dry film
(Exposure/Developing)

Laser filling Cu plating
Pattern plating

Dry film stripping+

Copper Annealing

Flash Etching
Etch away
base Cu

IMAPS Phoenix, AT&S, Anderson, SLP mSAP Technology, Jan 2019
What is the trend in Smart Phones

1. **Advanced Processor**
 - Picture Resource: Qualcomm

2. **Better signal & Low noise**
 - Picture Resource: Qualcomm

3. **Thinner Board**
 - Picture Resource: Gionee Mobile

4. **Bigger Battery**
 - Smaller/modularized main board
 - Picture Resource: Qualcomm

IMAPS Phoenix, AT&S, Anderson, SLP mSAP Technology, Jan 2019

Copyright AT&S
What does it mean for the PCB

Main board

Structure: 10-14 layer any layer

Density of pattern layout
0.35mm BGA (with 2-3 line in between)

Material: Thin PP/Core(1027/1017, 50/40μm)
- Low Dk (3.4)
- Low Df (0.002)
- High Tg
- Low CTE(x,y,z)

Others: Good line shape
- Tight line tolerance

Advanced Processor

Bigger Battery

Smaller/modularized main board

Thinner Board

Better signal/ Low noise
mSAP Plants Overview

Plant: Shanghai Plant
Location: Xin Zhuang Industrial Park
Products: HDI PCB, 4-16 layer

Plant: Chongqing Plant
Location: Yuzui Industrial Park
Products: HDI PCB, 4-16 layer, SLP
AT&S – SLP Factory brings large scale SLP Capacity and Capability

State-of-the-art facilities World-Class factory

Data driven Quality System with strong automation & process control
SLP-mSAP Industry Technology Development Examples

Finer Pitch FIWLP and FOWLP Drive Tighter Ball Pitch and PCB/Substrate Routing

Figure 6: Effect of trace count on dimensions. (Source: Altera)

Table 1: L/S required for given pad dimensions.

<table>
<thead>
<tr>
<th>Number of Traces</th>
<th>Required Line / Space Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$g \geq \text{Line Width} + (2 \times \text{Space Width})$</td>
</tr>
<tr>
<td>2</td>
<td>$g \geq (2 \times \text{Line Width}) + (3 \times \text{Space Width})$</td>
</tr>
<tr>
<td>3</td>
<td>$g \geq (3 \times \text{Line Width}) + (5 \times \text{Space Width})$</td>
</tr>
</tbody>
</table>

Table 2: Outline comparison of PCB production techniques.

<table>
<thead>
<tr>
<th>Achievable L/S (µm)</th>
<th>Subtractive</th>
<th>mSAP</th>
<th>amSAP</th>
<th>SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu clad thickness (µm)</td>
<td>2–9</td>
<td>2–5</td>
<td><3</td>
<td></td>
</tr>
<tr>
<td>L’less Cu thickness (µm)</td>
<td>0.35–0.50</td>
<td>0.35–0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Flash Cu thickness (µm)</td>
<td>2–5</td>
<td>1–3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel plating thickness (µm)</td>
<td>15–20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern plating required</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Etch resist</td>
<td>Dry film or LER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu to be etched</td>
<td>17–29</td>
<td>4–10</td>
<td><3</td>
<td>0.7–1.2 (Rz)</td>
</tr>
</tbody>
</table>

Source: Atotech paper - PCB Magazine Sep, 2018

Figure 7: Critical factors within the HDI Roadmap. (Sources: IPC, Jisso, Atotech, customer base)
SiP / Modules
- Wearables
- Automotive
- “Modularize & Standardize” generic elements (eg. WiFi, NFC,...)

Main challenges

- Strong technical capability (Fine line/Pad/thin material)
- Foreign material
- Thin board handling
- Design optimization & routing

SLP

mSAP
Thin panel handling required - Equipments & Automation

Advanced equipment & Inline automatic system for ultra thin panel (*min 150µm*)

- Touchless Vertical developer
- Touchless vertical copper plating line
- Automatic lay-up
- Roller coater Solder mask for ultra thin panel
- AT&S own trolley & tray design for thin panel transportation
- Less manual Handling
- Better design for thin panel capability
Agenda

What is mSAP (mSAP vs. Subtractive)

Why mSAP

mSAP capability & Roadmap

Summary

Q&A
Summary – New System Integration Design Opportunities

- **Substrate-like PCB: mSAP** – enables miniaturization through higher functional integration of components reducing Z-height, improving signal integrity, and better thermal management.

- **Advanced Substrates** – provide Lines/Spaces below 10µm for integrating high-end nanoCMOS Integrated Circuits such as processors.

- **Embedding** – is an enabling technology for module integration, especially for large numbers of electronic components, RF filters, antennas, or thermal management devices (Cu plates, heat pipes).

- **System in Board** – combines PCB, substrates and embedding in a single technology platform (FO-SiB™) to enable single-function, multi-function, and „All-in-One“ module integration solutions.
AT&S first choice for advanced applications